
206

INTRODUCTION

Beam deflection estimation is a significant 
key factor for structure health monitoring and 
performance evaluation. The deflection of a beam 
can be estimated either from deterministic model 
or from experimental analysis. The deterministic 
model estimation is usually made based on sim-
ple assumptions by using bending or shear theory. 
A stochastic model can be generated based on a 
set of experimentally collected data. The predic-
tion of a target variable y(x) corresponding to a 
D-dimensional input vector x(t) can be achieved
by using regression. A simple regression model
is a linear model that involves a linear combina-
tion of the input variables known as radial basis
functions. Such functions can be linear or non-
linear with respect to the input variables. The
radial basis functions can handle the behaviour

of the system based on the selected function 
[1,2]. Based on a prior knowledge the posterior 
of deflection can be estimated by using Bayes-
ian linear parameter model taking into account 
an uncertainty of estimation. The deflection of a 
cantilever beam is analysed numerically and ex-
perimentally under concentrated load at the free 
end [3]. A simple nonlinear differential equation 
is derived to prove the nonlinearity of the system. 
The experimental results are compared to the An-
sys software results. The dynamic deflection of 
a beam is derived from strain mode shapes, that 
estimated from experimental data based on sto-
chastic subspace identification algorithm.

The performance of proposed method is 
evaluated by numerical simulations of two 
beams cantilever and simply supported beam, 
where the obtained results showed a good per-
formance with small estimation error[4]. Finite 
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element model updating for mode shapes and 
frequencies estimations is introduced based on 
a Bayesian model. The uncertainty estimation 
results show that the uncertainty decrease with 
the increase of the number of sensors used to 
collect the experimental data [5]. A meshless 
based on Gaussian basis function is developed 
for one dimensional convection-diffusion prob-
lems. Time dependent variable in this work con-
sidered as a normal space variable. Root mean 
square error (RMS) and average absolute error 
(AAE) are used to compare the obtained results 
with the literature [6]. Uncertainty quantifica-
tion based Bayessian approach is used to update 
system parameters such as stiffness and mass 
of the structure. Two numerical examples for 
damage detection is implemented in this work 
and the obtained results showed a better perfor-
mance based the proposed approach than the tra-
ditional ones [7]. The stochastic perspective of 
linear finite element method is studied for physi-
cal systems of discreate points to establish an 
uncertainty quantification approach for domain 
boundary with nodal coordinates.

The proposed work is validated by demon-
strating a numerical example [8]. A numerical 
model based radial basis functions is devel-
oped for cantilever laminated beam composed 
of two materials aluminum and silicon dioxide. 
The estimated deflection values show a good 
correlation with experimental results and the 
suggested optimal design based on the devel-
oped numerical model is found to be light in 
weight and low in rigidity [9]. A stochastic 
non-parametric model by using MonteCarlo 
simulation is introduced to find the deflection 
of simply supported beam. The performance of 
the proposed model is evaluated by merging the 
model with the experimental data by using Kal-
man filter. The obtained results showed that the 
uncertainty associated with load is very small, 
whereas the dimension uncertainty has a signif-
icant effect on the uncertainty of estimation of 
beam deflection [10]. The effect of the uncertain 
system parameters on the deflection of a simply 
supported beam are studied by using stochas-
tic finite volume method considering stochastic 
modulus of elasticity and stochastic load [11]. 
A bayessian finite element approach is adapted 
to update system parameters [12]. The method 
is examined by using the experimental data of 
Kraaij [13] of a cantilever steel beam. The sys-
tem parameters in this study were the Young 

modulus and the beam geometry parameters. 
The stochastic sense is developed by using 
MonteCarlo method. Measurement uncertainty 
can contribute to understand the beam deflec-
tion uncertainty estimation. Digital image tech-
niques are used to estimate the uncertainty of 
measuring of static in plane and dynamic out 
of plane displacements for a cantilever beam 
[14]. The strain of a simple composite beam is 
related to the temperature gradient under static 
load to study the effect of temperature on the 
structure damage of the beam [15].

From above it can be concluded that the mesh 
based methods required a computational cost 
higher than that needed for mesh less based meth-
ods. It is also important to note that, the selection 
of the radial basis function (mesh less function) 
play an important rule in building the best model 
to regress the collected data. 

In the present work, a parametric stochastic 
beam deflection estimator is proposed based on 
Bayessian linear model with Gaussian noise, pri-
or and posterior. The model relating the deflection 
of the beam to the position by using three radial 
basis functions, the functions used in this work 
are (linear, Gaussian, modified Gaussian func-
tions). The contribution of the proposed model is 
included the use of a Bayesian model resulted in 
a distribution estimation of deflection instead of 
a value estimation corresponding to deterministic 
model. The model also comprised the modifica-
tion of the Gaussian function to adapt the model 
with observed data. 

BAYESSIAN LINEAR PARAMETER MODEL

Regression linear model is consisted of lin-
ear mapping function to predict the deflection 
of beam, by considering linear combinations 
of a set of nonlinear functions, known as basis 
functions. Such models are mesh less models 
that used in wide range of engineering applica-
tions as in [2, 9]. Building the model by taking 
into account a Gaussian noise and apply the Bays 
rule. This can expresses our uncertainty about the 
value of deflection for each value of location x. 
Consider the model of the form:

 y = f (x; w) + б (1)

 
𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)

𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 
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where: wi – are called ‘weights, φi(x) – the basis 
functions, the number of basis functions 
is dim (w) = B, and б – is a Gaussian noise 
б ∼ N (б, 0, σ2), we can use β = 1/σ2 in-
stead of σ.

Suppose a Gaussian prior distribution with a 
precision of  is [16]:

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 

  

 (2)

The likelihood based on model generate the 
data is:
 

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 

  

  (3)

According to Bayes rule, the Gaussian weight 
posterior can be expressed as [17,18]:
 

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 

  

  (4)
where: Γ = {α; β} is a hyperparameter set. 

The covariance and mean are given by:

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 

  

The model network representation is depicted 
in Figure 1, where the prior controlled by param-
eter  and the observations noise is managed by 
parameter.

Model hyperparameters optimization

The marginal likelihood of D given model 
specific parameters is  can be written for param-
eter as [16]: 
 

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 

  

  (5)

Zero gradient is considered to maximise the 
marginal likelihood: 

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 

  

and 

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 

  

As a result:
 

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 

  

  (6)

Similarly, hyperparameter β can be updated 
from:

 

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 

  

  (7)

where:

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 

  

The complete solution based on the proposed 
model is depending on parameters β, α and on the 

Fig. 1. Network of the model [16]

Algorithm 1. Regresion based beam deflection 
estimation algorithm

select a proper basis function 𝝋𝝋𝝋𝝋(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏)  
intialise 𝜷𝜷𝜷𝜷 and 𝜶𝜶𝜶𝜶  
while not converged do 
𝒊𝒊𝒊𝒊 ← 𝒊𝒊𝒊𝒊 + 𝟏𝟏𝟏𝟏 

𝑺𝑺𝑺𝑺𝒊𝒊𝒊𝒊 ← �𝜶𝜶𝜶𝜶𝒊𝒊𝒊𝒊−𝟏𝟏𝟏𝟏𝑰𝑰𝑰𝑰 + 𝜷𝜷𝜷𝜷−𝟏𝟏𝟏𝟏�𝝋𝝋𝝋𝝋(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏)𝝋𝝋𝝋𝝋𝑻𝑻𝑻𝑻(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏)
𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏

�

−𝟏𝟏𝟏𝟏

 

𝒎𝒎𝒎𝒎𝒊𝒊𝒊𝒊 ← 𝜷𝜷𝜷𝜷𝒊𝒊𝒊𝒊−𝟏𝟏𝟏𝟏𝑺𝑺𝑺𝑺𝒊𝒊𝒊𝒊−𝟏𝟏𝟏𝟏�𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏𝝋𝝋𝝋𝝋(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏)
𝑵𝑵𝑵𝑵

𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏

 

update parameters 

𝜷𝜷𝜷𝜷𝒊𝒊𝒊𝒊 =
𝟏𝟏𝟏𝟏 − 𝜷𝜷𝜷𝜷𝒊𝒊𝒊𝒊−𝟏𝟏𝟏𝟏 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺�)𝒊𝒊𝒊𝒊−𝟏𝟏𝟏𝟏

𝟏𝟏𝟏𝟏
𝑵𝑵𝑵𝑵  ∑ �𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏 −𝒎𝒎𝒎𝒎𝑻𝑻𝑻𝑻𝒊𝒊𝒊𝒊−𝟏𝟏𝟏𝟏𝝋𝝋𝝋𝝋(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏)�

𝟐𝟐𝟐𝟐𝑵𝑵𝑵𝑵
𝒏𝒏𝒏𝒏=𝟏𝟏𝟏𝟏

 

𝜶𝜶𝜶𝜶𝒊𝒊𝒊𝒊 =
𝑩𝑩𝑩𝑩

𝒘𝒘𝒘𝒘𝑻𝑻𝑻𝑻𝒘𝒘𝒘𝒘
 

end while 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑺𝑺𝑺𝑺 = ��𝒚𝒚𝒚𝒚 −𝒎𝒎𝒎𝒎𝑻𝑻𝑻𝑻 𝝋𝝋𝝋𝝋�
𝟐𝟐𝟐𝟐

𝑵𝑵𝑵𝑵
 

end 
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selection of the basis function φ(xn), which can 
be either linear or non linear function. The whole 
algorithm for updating the model parameters is 
depicted in Algorithm 1.

RESULTS AND DISCUSSION

The deflection of a simply supported beam is 
measured to represent the target (y) of estimation 
and the location of point of estimation represent 
the (x) vector. The beam has the following dimen-
sions: 75 cm length, width 24 mm and thickness 
4 mm, E = 2×1011 N/m2. The deflection is mea-
sured by using a dial gauge in the applied me-
chanics lab in the technical college of Basra. The 
experimental setup is shown in Figure 2, where a 
central concentrated load is applied and the de-
flection is measured in 7 positions from left side 
to the middle of the beam as depicted in Figure 2. 
Regression based model is created with three dif-
ferent basis functions. The basis functions used in 
this work are linear function, Gaussian function 
and modified Gaussian function. For comparison 
of the obtained results RMS value is estimated to 
test the correlation of the results. For linear func-
tion the factors β and α are assumed constant, 
whereas the Algorithm 1 is used to estimate both 
of them in case of using the Gaussian and modi-
fied Gaussian functions. The Gaussian function 
used in this work of the form:

 

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
𝐵𝐵

𝑖𝑖=1
 

𝑝𝑝(𝑤𝑤|𝛼𝛼) = 𝑁𝑁(𝑤𝑤|0, 𝛼𝛼−1𝐼𝐼) = ( 𝛼𝛼2𝜋𝜋)
𝐵𝐵
2 e(−

𝛼𝛼
2𝑤𝑤

𝑇𝑇𝑤𝑤)  (2) 

𝑝𝑝(𝐷𝐷|𝑤𝑤) = ∏ 𝑝𝑝(𝑦𝑦𝑛𝑛|𝑤𝑤, 𝑥𝑥𝑛𝑛)𝑝𝑝(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1  (3) 

𝑝𝑝(𝑤𝑤| Γ, 𝐷𝐷) = 𝑁𝑁(𝑤𝑤|𝑚𝑚, 𝑆𝑆) (4) 

𝑆𝑆 = (𝛼𝛼𝐼𝐼 + 𝛽𝛽∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
)
−1

,  

𝑚𝑚 = 𝛽𝛽𝑆𝑆∑𝑦𝑦𝑛𝑛𝜑𝜑(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝑝𝑝(𝐷𝐷|Γ) = 𝑝𝑝(w|𝛼𝛼) (5) 
𝜕𝜕
𝜕𝜕Γ 𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) 

𝜕𝜕
𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵2 𝑙𝑙𝑙𝑙𝑙𝑙𝛼𝛼 + 𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 

−12𝑤𝑤
𝑇𝑇𝑤𝑤 + 𝐵𝐵

2𝛼𝛼 = 0 

𝛼𝛼 = 𝐵𝐵
𝑤𝑤𝑇𝑇𝑤𝑤 (6) 

𝛽𝛽 = 1−𝛽𝛽 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆�̂�𝑆)
1
𝑁𝑁 ∑ [𝑦𝑦𝑛𝑛−𝑚𝑚𝑇𝑇𝝋𝝋(𝒙𝒙𝒏𝒏)]2𝑁𝑁

𝑛𝑛=1
  (7) 

�̂�𝑆 = 1𝑁𝑁∑𝜑𝜑(𝑥𝑥𝑛𝑛)𝜑𝜑𝑇𝑇(𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
   (8) 

𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)

𝜆𝜆
)

 

 (9) 

  

  (8)

where: ci – are centers spread out from -2 to 2, 
 λ – is the width, μ – represent a regulariza-

tion factor.

The RMS error is used for the selection of op-
timal λ and μ factors. A new function adapted has 
the form of: 

 

𝑓𝑓(𝑥𝑥, 𝑤𝑤) =∑𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥)
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𝑁𝑁
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𝜕𝜕Γ 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝐷𝐷|Γ) =

𝜕𝜕
𝜕𝜕𝛼𝛼 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(w|𝛼𝛼) = −𝛼𝛼2 𝑤𝑤
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𝜕𝜕
𝜕𝜕𝛼𝛼 𝑝𝑝(w|𝛼𝛼) = −

1
2𝑤𝑤

𝑇𝑇𝑤𝑤 + 𝐵𝐵𝛼𝛼 
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1
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𝑁𝑁
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𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒
(−𝜇𝜇(𝑥𝑥−𝑐𝑐𝑖𝑖)

2

𝜆𝜆
)
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𝜑𝜑𝑖𝑖(𝑥𝑥) = 𝑒𝑒(
 −

𝜇𝜇√(𝑥𝑥−𝑐𝑐𝑖𝑖)
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 (9) 

  

  (9)

Which known in this work as the modified 
Gaussian function.

In general, the performance of three proposed 
models are compared in Table 1, where it can 
be seen clearly that the minimum RMS value is 
obtained when the Modified Gaussuian function 
based model is used and the Gaussian function 
performance is very week with maximum RMS 
for all loading cases. Modified Gaussian function 
correlate closely to the experimental data and the 
best value for regularization factor is 0.9 with dif-
ferent values of function width λ for all loads as 
shown in Table 1. The RMS values for the linear 
model is less than that of the Gaussian model, but 
it is greater than the RMS of the Modified model. 
It can be conclude that the modified model is the 
best model of the proposed model that can predict 
the deflection with minimum RMS error. 

Linear function-based estimation is displayed 
in Figure 3 with maximum RMS error of 0.904 
when the load is 4 kg. Figure 4 shows the esti-
mation of deflection based on Modified Gaussian 
function for set of values of λ for load of 4 kg. 

Fig. 2. Schematic diagram of the experimental setup

Table 1. RMS value corresponding for estimation of bending by three models for three loads

Load (kg)

Model

Linear Gaussian Modified  Gaussian

RMS RMS μ λ α β RMS μ λ α β

4 kg 0.904 8.465 0.7 1.8 1 0.014 0.608 0.9 -1.6 0.598 0.017

6 kg 0.722 3.48 0.5 1 1 0.006 0.539 0.9 -1.4 1 0.006

8 kg 0.34 16.11 0.5 1.2 1 0.0039 0.165 0.9 -1.55 1.033 0.2045
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Fig. 3. Deflection estimation with linear function

Fig. 4. Comparison of the modified Gaussian based model with experimental data for m = 4 kg

Fig. 5. RMS value for different values of λ of the modified Gaussian based model for m = 4 kg
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Fig. 6. Comparison of the modified Gaussian based model with experimental data for m = 6 kg

Fig. 7. RMS value for different values of λ of the modified Gaussian based model for m = 6 kg

Fig. 8. Comparison of the modified Gaussian based model with experimental data for m = 8 kg
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Mean prediction is plotted in solid line bounded 
by standard deviation doted lines. The best model 
corresponding to minimum RMS error value is 
observed when λ = -1.6 and regularization factor 
μ of 0.9. The relation between RMS value and λ is 
depicted in Figure 5 to show the best performance 
of the selected model. 

The prediction of deflection under 6 kg load 
is illustrated in Figure 6 for different values of 
λ, for regularization factor of 0.9 as mentioned 
before, where a set of values of μ is used and the 
factor corresponding to minimum RMS value is 
considered. Figure 7 indicates the RMS error 
of prediction against model width (λ), where 
it can be observed that the minimum error is 
reached at λ = -1.4. For 8 kg loading case the 
minimum obtained error is 0.165 correspond-
ing to model with λ = -1.55 as seen in Figures 
8 and 9. The Gaussian model prediction for 
all loading cases is not acceptable as it has a 
very high RMS error compared to linear model 
and modified Gaussian function-based model. 
For all three loading cases it can be seen that 
the optimal regularization factor is 0.9 and the 
model width is in the range (-1.6 to -1.4) for 
modified Gaussian function

In order to check the validity of the proposed 
model a comparison of the loading case study 
that has the maximum RMS error of 0.608, with 
a deterministic model based bending theory is 
made. It can be seen from Figure 10 that the 
modified Gaussian based estimation is close to 
experimental data better than the deterministic 
model estimation, where the RMS error of de-
terministic bending based model is 2.337 which 
greater than 0.608.

Fig. 9. RMS value for different values of λ of the modified Gaussian based model for m = 8 kg

Fig. 10. Deflection estimation comparison

CONCLUSIONS

A Bayesian linear model for deflection estima-
tion is introduced for simply supported beam, the 
model based on a basis mapping function, which 
can be linear or nonlinear. In this work, three 
types of functions are employed: linear, Gaussian 
and modified Gaussian. Two factors character-
ize the performance of the Gaussian and modi-
fied Gaussian functions are regularization factor 
μ and the width λ. The ability of three functions 
to predict the deflection of three loading weights 
is compared. From the obtained results, it is clear 
that the prediction of Gaussian is unable to catch 
the behavior of the system. On the other hand the 
modified Gaussian function show a high ability 
to mimic the collected data. The prediction based 
linear basis function has an accepted RMS val-
ues, but it still higher than the modified function 
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introduced in this work. Three cases are studied 
in this work with central concentrated load of 4 
kg, 6 kg and 8 kg applied on simply supported 
beam. The obtained results showed that the op-
timal regularization factor is 0.9 and the model 
width is in the range (-1.6 to -1.4) for modified 
Gaussian function. The comparison of modified 
Gaussian function results with a classic determin-
istic model based bending showed that the Gauss-
ian function performance is better than that of the 
deterministic model. The proposed work intro-
duced a new simple function (modified Gaussian 
function) with low computational cost and based 
on stochastic approach (Bayesian inference). 
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